



# N.H. Polar Jet Stream Isentropic Analysis:

Arianna Corry - Atmospheric Sciences Mentor: Dr. Giuseppe Torri

Previous work: Spring 2023

 > NH polar jet core on a constant pressure surface using latitude of maximum Quasi-Geostrophic Potential Vorticity to locate jet at each longitude.
Current work: Fall 2023

>New method: <u>Isentropic Analysis</u> >Air tends to move along isentropic surfaces, where potential temperature is constant and entropy is conserved. Jet streams typically move along a 310-315 K isentropic surface (neglecting diabatic heating).





<u>Calculated the 310 K isentropic surface</u> (Figure 1): Using ERA5 Reanalysis data, identified pressure level indices with potential temperature closest to 310 K at every latitude and longitude for each time step.

Found the daily <u>Average Latitude of Maximum Potential Vorticity</u> (jet core) for each day by first finding the latitude of maximum PV for each longitude at each time step (**Figure 2**). Then, daily (4 time steps) average latitude of max PV is calculated at each longitude (**Figure 3**) over one month - Dec 2021 (**Figure 4 and 5**).



## FIGURE 3. DAILY AVERAGE LOCATION OF JET CORE (1 WEEK DISPLAYED)



FIGURE 4. DAILY AVERAGE LOCATION OF JET CORE (1 MONTH DISPLAYED)



#### FIGURE 5. MONTHLY AVERAGED LATITUDES OF MAX PV



Average Latitude along the Curve: 3.72

## **Future Work:**

-Find monthly average latitude of max PV for longer time periods (years to decades) [Months (x), Mon Avg Lat Max PV (y)]

-Use daily and monthly average latitude of max PV to quantify jet waviness and analyze climatological and intraseasonal variability of the North Polar Jet.

### -More data - Convert netCDF to CSV form

Monthly Average Latitude: 55.80000000000004